Chapitre 5: Structures de données

INF3135
Construction et maintenance de logiciels

Alexandre Blondin Massé

Université du Québec a Montréal

v253

SIeicl

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 1/57

Généralités

Structure de données
Organisation logique d'un ensemble de données

Plusieurs objectifs

e Simplifier le traitement
e Offrir des opérations efficaces
® Economiser de |'espace mémoire

Interface et implémentation

® Interface: opérations supportées (type abstrait)
¢ Implémentation: organisation des données en mémoire,
actions effectuées pour réaliser les opérations

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

2/57

Type abstrait: exemples

® Pile (stack): principe last in first out (LIFO)

® File (queue): principe first in first out (FIFO)

® File a priorité (priority queue): la priorité des éléments peut
étre augmentée ou diminuée

® Liste: les éléments sont ordonnés, on peut avoir des opérations
d'acces, d'insertion, de suppression

® Ensemble (set): aucune donnée répétée (doublon), vérification
d’'appartenance d'éléments, données ordonnées ou non

¢ Tableau associatif (map): un ensemble de paires clé-valeur, les
clés doivent étre uniques, les valeurs peuvent étre répétées

® Partition: division d'un ensemble en parties, fusion entre
parties, vérifier si deux éléments sont dans la méme partie

e Graphe: relations symétriques (graphes non orientés) ou non
symétrique (graphes orientés) entre entités

A. Blondin Massé (UQAM) INF3135 v253 CC-BY-NC-SA 3/57

Implémentation: exemples

® Tableau statique: mémoire allouée et fixe, capacité maximale
permise

® Tableau dynamique: tableau compressé ou allongé selon les
besoins

e Liste simplement chainée: chaque élément a une référence au
suivant

¢ Liste doublement chainée: chaque élément a une référence a
I'élément précédent et a I'élément suivant

® Structure arborescente: arbres binaires, arbres préfixes, arbres
suffixes, arbres d’arité quelconque, arbres coloriés, arbres-kd

¢ Tableau multidimensionnel: statiques ou dynamiques
Liste d’adjacence: matrice creuse, graphes

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 4 /57

Invariants et opérations

Invariant
® Propriété qui doit étre satisfaite en tout temps
® (énéralement vérifiable a I'aide d’'une fonction booléenne

Opération
® Toute fonction qui modifie la structure de données
® Doit toujours préserver les invariants

Exemples

® Chaine de caractéres: termine par '\0'
¢ Liste simplement chainée: le dernier noeud pointe vers NULL
® Arbre binaire de recherche: les clés respectent |'ordre

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 5/57

Table des matiéeres
@ Allocation dynamique

@ Gestion de la mémoire

© Piles

O Tableaux dynamiques

@ Tableaux multidimensionnels

@ Arbres binaires de recherche

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 6 /57

Allocation dynamique

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Allocation dynamique

Jusqu’'a maintenant: mémoire réservée de facon statique
Or, cette information n'est pas toujours connue a l'avance
Solution: allouer I'espace mémoire de facon dynamique
Dans la bibliotheque stdlib.h:

// Réserve un bloc de taille ~“size"
void* malloc(size_t size);
// Libére 1'espace mémoire pointé par “ptr’

void free(void* ptr);

// Réserve un bloc de taille “nmemb * size ™ initialisé a 0
void* calloc(size_t nmemb, size_t size);

// Redimensionne un bloc
void* realloc(void* ptr,
// Redimensionne un bloc
void* reallocarray(voidx*

A. Blondin Massé (UQAM)

de taille “size ™ déja alloué dynamiquement
size_t size);

de taille “nmemb * size’

ptr, size_t nmemb, size_t size);

Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

8/57

LeS fonctions malloc €t calloc

void* malloc(size_t size);

® Réserve sur le tas (heap) un bloc de mémoire
® De taille size

® Retourne un pointeur vers ce bloc

® Retourne NULL s'il n'y a plus d’espace mémoire

void* calloc(size_t nmemb, size_t size);

® Réserve nmemb blocs de mémoire consécutifs

® De taille individuelle size

¢ [nitialise toutes les valeurs a 0

® Retourne un pointeur vers ce bloc

® Retourne NULL s'il n'y a plus d’espace mémoire

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

9/57

La fonction free

void free(void* ptr);

Libére I'espace mémoire pointé par ptr

Réservé lors d'un appel précédent a malloc ou calloc
La taille libérée est égale a celle réservée

Si ptr == NULL, alors rien ne se passe

Attention
® Si free a déja été appelé sur ptr
® QOu si la mémoire pointée par ptr n'a pas été allouée
précédemment
Alors le comportement est indéfini.

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 10/57

Les fonctions realioc €t reallocarray

void* realloc(void* ptr, size_t size);

Redimensionne un bloc de mémoire a la taille size
Préalablement réservé avec malloc ou calloc
Retourne un pointeur vers le bloc redimensionné
Retourne NULL s'il n'y a plus d'espace mémoire

void* reallocarray(void* ptr, size_t nmemb, size_t size);

° Equivalent a realloc(ptr, nmemb * size)

Attention
® | a valeur des octets présents avant et apres est préservée
e Si agrandissement, les « nouveaux » octets sont indéterminés
® Pointeur retourné peut étre différent du pointeur en ler
argument

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 11 /57

Gestion de la mémoire

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Fuite de mémoire (memory leak)

® Mémoire réservée mais non référencée

® Provoquée lorsqu'on appelle malloc ou calloc

® Et qu'on oublie de libérer avec free

® Attention: souvent « cachée » derriere une autre fonction

Exemples
® |nitialisation d'une structure de données dynamique

e Utilisation de la fonction strdup (duplication de chaine)
® Bibliothéque SDI: SDL_Init

Comment les éviter?
® S'assurer que tout appel a malloc ou calloc
® Est couplé a un appel de la fonction free
® Souvent a I'aide de fonctions

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 13 /57

https://www.libsdl.org/

Responsabilité de mémoire

® Si une fonction utilise malloc sans free associé
® Le comportement doit étre documenté (docstring)

e Exemple: la fonction strdup
The strdup() function returns a pointer to a new string which

is a duplicate of the string s. Memory for the new string is
obtained with malloc(3), and can be freed with free(3).

® Fournir une fonction complémentaire qui libere I'espace alloué
® Exemple: sDL_Quit est I'« inverse » de SDL_Init

Attention
¢ Pas de ramasse-miettes (garbage collector)
® Préférer un passage par adresse
® Et utiliser malloc/calloc/free seulement lorsqu’inévitable

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 14 /57

L'outil Valgrind

e (Cadriciel permettant de concevoir des outils d'analyse
dynamique

Permet de détecter des erreurs de gestion de mémoire
Et de profiler un programme en détail

Lien officiel: http://valgrind.org/

Invocation:

$ valgrind [options valgrind] [programme] [options programmel]

Plusieurs dizaines d'options:

--tool=<toolname>: outil (par défaut, memcheck)
--leak-check=<no | summary|yes|full>: vérifier fuites mémoires
-—time-stamp=<yes|no>: afficher chronologie
--track-origins=<yes|no>: origine des valeurs non initialisées
etc.

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 15 /57

http://valgrind.org/

Exemple (1/5)

#include <stdio.h>
#include <stdlib.h>

double* sum(const double* vl, const double* v2, unsigned int n) {
double* v = malloc(n * sizeof (double));
for (unsigned int i = 0; i < nj; ++i)
v[i] = v1[i]l + v2[il;
return v;

}

void print_vector(const double* v, unsigned int n) {
printf ("[");
for (unsigned int i = 0; i < n; ++i)
printf ("%1f ", v[il);
printf ("]1");
}

int main(void) {
double vi[] = { 2.0, -1.5, 3.4};
double v2[] = {-1.0, 2.1, -0.8};
print_vector (sum(vl, v2, 3), 3);
return O;

Résultat:

[1.000000 0.600000 2.600000 1]

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

16 /57

Exemple (2/5)

$ gcc sum_malloc.c -o sum_malloc

$ valgrind ./sum_malloc

$ valgrind --leak-check=yes ./sum_malloc

==6724== Memcheck, a memory error detector

Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
Command: ./sum_malloc

==6724==
[1.000000 0.600000 2.600000]==6724==
==6724== HEAP SUMMARY:

in use at exit: 24 bytes in 1 blocks
total heap usage: 2 allocs, 1 frees, 1,048 bytes allocated

24 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4C2FBOF: malloc (in /usr/lib/valgrind/[...]
by 0x10876B: sum (in [...]/code/sum_malloc)
by 0x1088BE: main (in [...]/code/sum_malloc)

LEAK SUMMARY:
definitely lost: 24 bytes in 1 blocks
indirectly lost: O bytes in O blocks
possibly lost: O bytes in O blocks
still reachable: O bytes in 0 blocks
suppressed: O bytes in O blocks

==6724==

==6724== For counts of detected and suppressed errors, rerun with: -v
==6724== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: O from 0)

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

17 /57

Exemple (3/5)

#include <stdio.h>
#include <stdlib.h>

double* sum(const double* vl, const double* v2, unsigned int n) {
double* v = malloc(n * sizeof (double));
for (unsigned int i = 0; i < n; ++i)
v[i] = vi[i] + v2[il;
return v;

}

void print_vector(const double* v, unsigned int n) {
printf("[");
for (unsigned int i = 0; i < n; ++i)
printf ("%1f ", v[il);
printf ("]1");
}

int main(void) {

double vi[] = { 2.0, -1.5, 3.4};
double v2[] = {-1.0, 2.1, -0.8};
double* v = sum(vl, v2, 3);
print_vector (v, 3);

free(v);

return O;

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

18 /57

Exemple (4/5)

$ gcc sum_malloc_free.c -o sum_malloc_free

$ valgrind --leak-check=yes ./sum_malloc_free

==10376== Memcheck, a memory error detector

==10376== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==10376== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==10376== Command: ./sum_malloc_free

==10376==

[1.000000 0.600000 2.600000]

==10376==

==10376== HEAP SUMMARY:

==10376== in use at exit: O bytes in 0 blocks

==10376== total heap usage: 2 allocs, 2 frees, 1,048 bytes allocated
==10376==

==10376== All heap blocks were freed -- no leaks are possible
==10376==

==10376== For counts of detected and suppressed errors, rerun with: -v

==10376== ERROR SUMMARY: O errors from O contexts (suppressed: O from 0)

Allocation dynamique

® Est-ce que malloc est vraiment nécessaire ici?
® Réponse: non!

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

19/57

Exemple (5/5)

#include <stdio.h>
#include <stdlib.h>

void compute_sum(const double* vl, const doublex* v2,
double* v, unsigned int n) {
for (unsigned int i = 0; i < n; ++i)
v[i] = v1[i]l + v2[il;
}

void print_vector(const double* v, unsigned int n) {
printf("[");
for (unsigned int i = 0; i < n; ++i)
printf ("%1f ", v[il);
printf ("]1");
}

int main(void) {
double vi[] = { 2.0, -1.5, 3.4};
double v2I[] {-1.0, 2.1, -0.8};
double v[3];
compute_sum(vl, v2, v, 3);
print_vector (v, 3);
return O;

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

20 /57

Piles

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Pile

® Structure de donnée fondamentale
® Stratégie LIFO = last in first out

Interface minimale (pile de caractéres)

// Initialize the stack

void stack_initialize(Stack* s);

// Is stack empty?

bool stack_is_empty(const Stack* s);
// Push a value on top

void stack_push(Stack* s, char value);
// Pop the value from the top

char stack_pop(Stack* s);

// Delete a stack

void stack_delete(Stack* s);

Implémentation

® Tableau statique ou dynamique
® |iste simplement chainée

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

INF3135 v253 CC-BY-NC-SA 22 /57

Représentation

Représentation schématique:

4
Déclaration de types en C: \
// Node X
struct StackNode { 4!
char value; /
struct StackNode* next; 'd! /
};
lil
// Stack it)
typedef struct {
struct StackNode* first;
unsigned int size; ‘o' o'
} Stack;)
|v|
IVI

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 23 /57

Invariants

Trois invariants

Pour toute pile s et pour tout noeud node de s,
® node.next == NULL SSi node est le dernier noeud de s
® s.first == NULL SSi stack_is_empty(s) est vraj
® | e nombre de noeuds dans s est donné par s.size

Utilité?
® Quand on implémente stack_push et stack_pop

® Supposer les invariants satisfaits en début de fonction
® Et s'assurer qu'ils sont encore satisfaits a la fin

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 24 /57

Implémentation (1/2)

// Initialize the stack

void stack_initialize(Stack* s) {
s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack

void stack_initialize(Stack* s) {
s->first = NULL;
s->size = 0; ??| 77

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0; ?7?
}

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0; 0
}

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0; O
}

// Is stack empty?
bool stack_is_empty(const Stack* s) { 2 27
return s->size == 0; o o

}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;

node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0; O
}

// Is stack empty?
bool stack_is_empty(const Stack* s) { ‘vl ??
return s->size == 0; "

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0; O
}

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack

void stack_initialize(Stack* s) {
s->first = NULL;
s->size = 0; O

} \

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (1/2)

// Initialize the stack

void stack_initialize(Stack* s) {
s->first = NULL;
s->size = 0; 1

} \

// Is stack empty?
bool stack_is_empty(const Stack* s) {
return s->size == 0;

}

// Push a value on top
void stack_push(Stack* s, char value) {
struct StackNode* node = malloc(sizeof (struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 /57

Implémentation (2/2)

// Pop the value from the top
char stack_pop(Stack* s) {
if (!stack_is_empty(s)) {
char value = s->first->value;
struct StackNode*x node = s->first;
s->first = node->next;
free(node) ;
--s->size;
return value;
} else {
fprintf (stderr, "Cannot pop from empty stack\n");
exit (1);
return '7?';
}
}

// Delete a stack
void stack_delete(Stack* s) {

while (!stack_is_empty(s)) stack_pop(s);
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 26 /57

Exemple d'utilisation: parenthésage équilibré
/*%
* Returns true if and only if an expression is balanced
*
* Q@param expr The expression to check
* Q@returns True if and only if the expression is balanced
*/
bool is_balanced(const char* expr) {
bool balanced = true;
Stack s;
stack_initialize (&s);
for (unsigned int i =
if (expr[i]l == '(')
stack_push(&s, ')
} else if (exprli
stack_push(&s,
} else if (exprli
stack_push(&s, '}
} else if (expr[i]l == ')' || expr[il == ']' || exprl[i]l == '}') {
if (stack_is_empty(&s))
balanced = false;
else
balanced = expr[i] == stack_pop(&s);

balanced && expr[i] !'= '\0'; ++i) {

1 ==10[{
'] 1
] {9 A

0;
{
s
N
)

}
¥
balanced = balanced && stack_is_empty(&s);
stack_delete (&s);
return balanced;

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 27 /57

Tableaux dynamiques

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Tableau dynamique

® Tableau dont la taille varie selon |'usage
® Supporté par défaut dans plusieurs langages
® Exemples: C++ (vector), Java (ArrayList), Python (listes)

Implémentation

e Capacité (capacity): taille « réelle » du tableau en mémoire
¢ Taille (size): nombre d'éléments « pertinents »

Redimensionnement
® Automatiquement, en doublant la taille
¢ Ou manuellement, par un appel de fonction
® Parfois, contracté automatiquement quand trop d'espace
inoccupé

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 29 /57

Interface

// Initialize an empty array
void array_initialize (Array* a);

// Append an element to the end of an array
void array_append(Array* a, int e);

// Insert an element in an array
void array_insert(Array* a, unsigned int i, int element);

// Remove an element from an array at a given index
void array_remove (Array* a, unsigned int i);

// Check if an array contains a given element
bool array_has_element (const Array* a, int e);

// Return the element at a given index in an array
int array_get(const Array* a, unsigned int 1i);

// Delete an array
void array_delete (Array* a);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA

30/57

Représentation

// A resizable array
typedef struct {

int* values; // The values of the array
unsigned int size; // The current size
unsigned int capacity; // The capacity
} Array;
values size capacity
5 8
]
¥
13|-4| 6 | 0 |-1|7??2|7??2|77
Invariants:

® | a taille réservée par values est capacity * sizeof (int)

® size <= capacity

® Seules les size premiéres valeurs sont « pertinentes »

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

INF3135 v253 CC-BY-NC-SA 31/57

/ .
Implémentation (1/4)
// Initialize an empty array
void array_initialize (Array* a) {

a->values = malloc(sizeof (int));
a->size = 0;
a->capacity = 1;

}

// Append an element to the end of an array
void array_append(Array* a, int e) {
array_resize_if_needed(a);
a->values[a->size] = e;
++a->size;

}

// Insert an element in an array

void array_insert(Array* a, unsigned int i, int e) {
array_check_index(a, i);
array_resize_if_needed(a);

for (unsigned int j = a->size - 1; j > i; --j)
a->values[j] = a->values[j - 1];

a->values[i] = e;

++a->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 32/57

Implémentation (2/4)

// Remove an element from an array at a given index
void array_remove (Array* a, unsigned int i) {
array_check_index(a, 1i);

++1;

while (i < a->size) {
a->values[i - 1] = a->values[i];
++1i;

}

--a->size;

}

// Check if an array contains a given element
bool array_has_element (const Array* a, int e) {
unsigned int i = 0;
while (i < a->size && array_unsafe_get(a, i) != e)
++i;
return i < a->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 33 /57

Implémentation (3/4)

// Return the element at a given index in an array
int array_get(const Array* a, unsigned int i) {
array_check_index(a, 1i);
return array_unsafe_get(a, i);

}

// Delete an array
void array_delete(Array* a) {
free(a->values);

}

// Resize an array if the capacity is reached
void array_resize_if_needed(Array* a) {

if (a->size == a->capacity) {

a->capacity *= 2;

a->values = realloc(a->values, a->capacity * sizeof (int));
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 34 /57

Implémentation (4/4)

// Return the element at index i in an array (mo check)
int array_unsafe_get(const Array* a, unsigned int i) {
return a->values[i];

}

// Print an array to stdout
void array_print(const Array* a) {
unsigned int i;
printf ("[");
for (i = 0; i < a->size; ++i) {
printf (" %d4", a->values[il]);
}
printf (" 1");
}

// Check if an index is out of bound
void array_check_index(const Array* a, unsigned int i) {
if (i >= a->size) {
fprintf (stderr, "Invalid index %d (size = %d)\n", i, a->size);
exit (1);
}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 35 /57

Utilisation (1/2)

int main() {

Array a; array_initialize(&a);
printf ("Appending 3, 2, 5, 7, 8, 7: ");
array_append(&a, 3); array_append(&a, 2);
array_append(&a, 5); array_append(&a, 7);
array_append(&a, 8); array_append(&a, 7);
array_print (&a);
printf ("\nRemoving at position 2: ");
array_remove (&a, 2); array_print(&a);
printf ("\nRemoving at position 4: ");
array_remove (&a, 4); array_print(&a);
printf ("\nRemoving at position 2: ");
array_remove (&a, 2); array_print(&a);
printf ("\nInserting 7 at position 1: ");
array_insert(&a, 1, 7); array_print(&a);
printf ("\n");
for (int e = 0; e <= 9; e += 2)

printf ("Has element %d 7 %s\n", e,

array_has_element (&a, e) ? "yes" : "no");
array_delete (&a);
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 36 /57

Utilisation (2/2)

Résultat:

Appending 3,

Removing at
Removing at
Removing at
Inserting 7

Has
Has
Has
Has
Has

element
element
element
element
element

2, 5,7, 8,
position 2:
position 4:
position 2:
at position
0 ? no
2 7 yes
4 7 no
6 7 no
8 7 yes

A. Blondin Massé (UQAM)

Chapitre 5: Structures de données

INF3135 v253 CC-BY-NC-SA 37 /57

Tableaux multidimensionnels

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Tableau multidimensionnel

® Généralisation d'un tableau a plusieurs dimensions
® Aussi appelé matrice

® Simplifie la manipulation des données homogenes

® En les organisant selon leurs dimensions

Version aplatie
® Tableau unidimensionnel

® Plus compact
® Mais on doit gérer I'acces (indexation)

Par indirection
® Tableau de pointeurs
® Moins compact
® Mais plus facile de gérer I'indexation

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 39 /57

Interface (partielle)

// Initialize a matrix

void matrix_initialize(struct Matrix* m,
unsigned int r,
unsigned int c,
bool random);

// Print a matrix to stdout
void matrix_print(const struct Matrix* m);

// Add the matrix "m2° to the matrix "mil~
void matrix_add(struct Matrix* ml, const struct Matrix* m2);

// Delete the given matrix
void matrix_delete(struct Matrix* m);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 40 /57

Représentation

struct Matrix {

unsigned int r; // Number of rows

unsigned int c; // Number of columns

double** values; // Values in matrix
};

r [values

4 3 _

N
5 /o.o 3.7 |-9.8
/

d
-2.5| 1.4 |-1.0

7.1]10.0 -4.1

-1.1| 3.4 | 8.5

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 41 /57

Implémentation (1/3)

// Initialize a matrix with O or random values
void matrix_initialize(struct Matrix* m,
unsigned int r,
unsigned int c,
bool random) {
m->r = r;
m->c = c;
m->values = malloc(r * sizeof (doublex*));
for (unsigned int i = 0; i < r; ++i) {
m->values[i] = malloc(c * sizeof (double));
for (unsigned int j = 0; j < c; ++j) {
if (random)
m->values [i] [j]

(float)rand() /

(float) (RAND_MAX / 20.0) - 10.0;
else

m->values[i] [j]

0.0;

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 42 /57

Implémentation (2/3)

// Print a matrix to stdout
void matrix_print(const struct Matrix* m) {

for (unsigned int i = 0; i < m->r; ++i) {
printf("[");
for (unsigned int j = 0; j < m->c; ++j)

printf ("%6.21f ", m->values[il[j]);
printf ("]J\n");
}
}

// Add the second matrix to the first one
void matrix_add(struct Matrix* ml, const struct Matrix* m2) {

if (m1->r != m2->r || mi->c != m2->c) {
fprintf (stderr, "Error: matrices have different dimensions\n");
exit (1);

}

for (unsigned int i = 0; i < ml->r; ++i)
for (unsigned int j = 0; j < ml->c; ++j)
mi->values[i] [j] += m2->values[i]l[j];

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 43 /57

Implémentation (3/3)

// Delete a matrix
void matrix_delete(struct Matrix* m) {
for (unsigned int i = 0; i < m->r; ++i)
free(m->values[i]);
free(m->values);

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 44 /57

Utilisation (1/2)

int main(void) {
srand (time (NULL)) ;
struct Matrix ml, m2;
printf("Initializing ml:\n");
matrix_initialize(&ml1, 3, 5, true);
matrix_print (&ml);
printf ("Initializing m2:\n");
matrix_initialize(&m2, 3, 5, true);
matrix_print (&m2);
printf ("Adding m2 to ml:\n");
matrix_add (&ml, &m2); matrix_print (&ml);
matrix_delete (&ml1); matrix_delete (&m2);
return O;

3

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 45 /57

Utilisation (2/2)

Résultat (les valeurs peuvent varier):

Initializing

[7.07 9.
[-5.21 -1.
[1.93 -8.

Initializing

[-0.74 1.
[-1.95 -6.
[4.34 3.

Adding m2 to

[6.33 10.
[-7.15 -8.
[6.26 -4.

ml:

70
31
22

m2:

29
93
63

mi:

99
24
59

A. Blondin Massé (UQAM)

.46
.26
.17

.24
.18
.78

.22
.44
.61

-12

.45
.26
.96

.09
.96
.20

.54
-6.
-14.

30
16

.04

0.70

.88

17
.75
.19

.14
.05
.07

Chapitre 5: Structures de données

INF3135 v253 CC-BY-NC-SA 46 /57

Arbres binaires de recherche

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Arbres binaires de recherche

Arbre binaire
® Ensemble de noeuds organisés de facon hiérarchique
® Chaque noeud référence deux enfants
® Possiblement vides

Arbre binaire de recherche (ABR)

® Chaque noeud est identifié par une clé

® Choisie dans un ensemble de clés totalement ordonné
® Et contient une valeur

® |nvariant:

SIS

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 48 /57

Représentation

root _
llkiwill llmlam! n ‘ . ‘ . ‘
llbananell "Spllt | n IIP)()HH.He n Ild 1 Apill -
"fraise" |"a la créme" -

// A tree node
struct TreeNode {
char* key; // Key
char* value; // Value
struct TreeNodex left; // Left subtree
struct TreeNode* right; // Right subtree
};

// A tree map
typedef struct {

struct TreeNode* root; // Root of tree
} Treemap;

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 49 /57

Interface

// Initialize an empty tree map
void treemap_initialize(Treemap* t);

// Return the value associated with the given key in a tree map
char* treemap_get(const Treemap* t, const charx key);

// Set the value for the given key in a tree map
void treemap_set(Treemap* t, const char* key, const charx value);

// Indicate if a key exists in a tree map
bool treemap_has_key(const Treemap* t, const char* key);

// Print a tree map to stdout
void treemap_print(const Treemap* t);

// Delete a tree map
void treemap_delete(Treemap* t);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 50 /57

Récupérer un noeud

struct TreeNode* treemap_get_node(const struct TreeNode* node,
const charx* key) {

if (node == NULL) {
return NULL;

} else {
int cmp = strcmp(key, node->key);
if (cmp == 0)

return (struct TreeNodex*)node;
else if (cmp < 0)

return treemap_get_node(node->left, key);
else

return treemap_get_node(node->right, key);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 51 /57

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, la clé melon
} else {
treemap_insert_node (&(*node)->right, key, va

On souhaite insérer

}

root __

[twi® [*ngamt” |, |, |

(\/ ¥
| Ilbananell | IIM | Ilpommell | IldlApill -
(
|"fraise" | "a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Insérer un noeud

const char* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, la clé melon
} else {
treemap_insert_node (&(*node)->right, key, va

On souhaite insérer

}
node
» root

[twi® [*ngamt” |, |, |

Y
| Ilbananell | IIM | Ilpommell | lldlApill -
J/f
|"fraise" | "a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

node —,
root

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" ‘l ‘l ‘

"pomme"

aipi [

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

node —,
root

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" ‘l ‘l ‘

"pomme"

aipi [

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

node —,
root

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" ‘l ‘l ‘

"pomme"

aipi [

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

node

root _ |

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" L ‘|‘

"pomme"

aipi [

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

node

root _ |

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" L ‘|‘

"pomme"

aipi [

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

¥
¥ node
root —
||kiwi n ||miam! n ‘l ‘ . ‘
"banane" HM "pomme" | "d' Api" -
[

"fraise"

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

node

root _ |

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" L ‘|‘

"pomme"

aipi [

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

root _ |

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" ‘ ‘ ‘
] |
& node

"pomme"

Ild 1 Apill

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*¥node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

root _ |

Ilkiwi n

"a la créme" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

"miam!" ‘ ‘ ‘
] |
& node

"pomme"

Ild 1 Apill

"fraise"

Insérer un noeud

void treemap_insert_node(struct TreeNode** node,
const charx* key,
const char* value) {
if (*node == NULL) {
*node = malloc(sizeof (struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;
} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node (&(*node)->left, key, value);
} else {
treemap_insert_node (&(*node)->right, key, value);

}

root —

| "kiwi" ["miam!" | []

node

{//—_“‘\\\\\\\\\\\\\5_——/// & ~—
"banane" ‘ "w ’ "pomme" ‘ "d'Api" ‘l .
e f\/
’ "fraise" ‘ "d la créme" - ’ "melon" ‘ "chapeau" -

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 /57

Implémentation (1/3)

void treemap_initialize(Treemap* t) {
t->root = NULL;

}
char* treemap_get(const Treemap* t, const char* key) {
struct TreeNode* node = treemap_get_node(t->root, key);
return node == NULL ? NULL : node->value;
}
bool treemap_has_key(const Treemap* t, const char* key) {
return treemap_get_node(t->root, key) != NULL;
}
void treemap_set(Treemap* t, const char* key, const char* value) {
struct TreeNode* node = treemap_get_node(t->root, key);
if (node != NULL) {
free(node->value);
node->value = strdup(value);
} else {

treemap_insert_node (&(t->root), key, value);
}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 53 /57

Implémentation (2/3)

void treemap_print(const Treemap* t) {
printf ("TreeMap {\n");
treemap_print_node(t->root);
printf ("}\n");

}

void treemap_print_node(const struct TreeNode* node) {
if (node != NULL) {
treemap_print_node (node->left);
printf (" ¥%s: %s\n", node->key, node->value);
treemap_print_node(node->right);
}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 54 /57

Implémentation (2/3)

void treemap_delete(Treemap* t) {
treemap_delete_node (t->root);

}

void treemap_delete_node(struct TreeNode* node) {
if (node != NULL) {
treemap_delete_node (node->left);
treemap_delete_node (node->right);
free(node->key);
free(node->value);
free(node);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 55 /57

Utilisation (1/2)

int main() {
Treemap t;
treemap_initialize (&t);
treemap_set (&t,
treemap_set (&t,
treemap_set (&t,
treemap_set (&t,
treemap_set (&t,
treemap_set (&t,

"city",

"firstname",
"lastname",

"province",
"country",
"position",

"Doina");
"Precup");
"Montreal");

"Quebec");
"Canada");
"DeepMind");

printf ("Printing the tree map\n");

treemap_print (&t);

printf ("Get \"firstname\": Y%s\n", treemap_get (&t,
printf ("Get \"province\": %s\n", treemap_get (&t,
printf ("Get \"position\":

"firstname"));
"province"));

%s\n", treemap_get(&t, "position"));

printf ("Changing country to Romania\n");

treemap_set (&t,

"country",
printf ("Get \"country\": %s\n", treemap_get (&t,

"Romania");
"country"));

printf ("Printing the tree map\n"); treemap_print (&t);

treemap_delete (&t);
}

A. Blondin Massé (UQAM)

Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 56 /57

Utilisation (2/2)

Résultat:

Printing the tree map
TreeMap {
city: Montreal
country: Canada
firstname: Doina
lastname: Precup
position: DeepMind Montreal Head
province: Quebec

¥
Get "firstname": Doina
Get "province": Quebec

Get "position": DeepMind Montreal Head
Changing country to Romania

Get "country": Romania
Printing the tree map
TreeMap {

city: Montreal

country: Romania

firstname: Doina

lastname: Precup

position: DeepMind Montreal Head
province: Quebec

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 57 /57

	Allocation dynamique
	Gestion de la mémoire
	Piles
	Tableaux dynamiques
	Tableaux multidimensionnels
	Arbres binaires de recherche

