
Chapitre 5: Structures de données
INF3135

Construction et maintenance de logiciels

Alexandre Blondin Massé

Université du Québec à Montréal

v253

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 1 / 57



Généralités

Structure de données
Organisation logique d’un ensemble de données

Plusieurs objectifs
• Simplifier le traitement
• Offrir des opérations efficaces
• Économiser de l’espace mémoire

Interface et implémentation
• Interface: opérations supportées (type abstrait)
• Implémentation: organisation des données en mémoire,

actions effectuées pour réaliser les opérations

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 2 / 57



Type abstrait: exemples
• Pile (stack): principe last in first out (LIFO)
• File (queue): principe first in first out (FIFO)
• File à priorité (priority queue): la priorité des éléments peut

être augmentée ou diminuée
• Liste: les éléments sont ordonnés, on peut avoir des opérations

d’accès, d’insertion, de suppression
• Ensemble (set): aucune donnée répétée (doublon), vérification

d’appartenance d’éléments, données ordonnées ou non
• Tableau associatif (map): un ensemble de paires clé-valeur, les

clés doivent être uniques, les valeurs peuvent être répétées
• Partition: division d’un ensemble en parties, fusion entre

parties, vérifier si deux éléments sont dans la même partie
• Graphe: relations symétriques (graphes non orientés) ou non

symétrique (graphes orientés) entre entités

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 3 / 57



Implémentation: exemples

• Tableau statique: mémoire allouée et fixe, capacité maximale
permise

• Tableau dynamique: tableau compressé ou allongé selon les
besoins

• Liste simplement chaînée: chaque élément a une référence au
suivant

• Liste doublement chaînée: chaque élément a une référence à
l’élément précédent et à l’élément suivant

• Structure arborescente: arbres binaires, arbres préfixes, arbres
suffixes, arbres d’arité quelconque, arbres coloriés, arbres-kd

• Tableau multidimensionnel: statiques ou dynamiques
• Liste d’adjacence: matrice creuse, graphes

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 4 / 57



Invariants et opérations

Invariant
• Propriété qui doit être satisfaite en tout temps
• Généralement vérifiable à l’aide d’une fonction booléenne

Opération
• Toute fonction qui modifie la structure de données
• Doit toujours préserver les invariants

Exemples
• Chaîne de caractères: termine par '\0'
• Liste simplement chaînée: le dernier noeud pointe vers NULL
• Arbre binaire de recherche: les clés respectent l’ordre

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 5 / 57



Table des matières

1 Allocation dynamique

2 Gestion de la mémoire

3 Piles

4 Tableaux dynamiques

5 Tableaux multidimensionnels

6 Arbres binaires de recherche

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 6 / 57



Allocation dynamique

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 7 / 57



Allocation dynamique

• Jusqu’à maintenant: mémoire réservée de façon statique
• Or, cette information n’est pas toujours connue à l’avance
• Solution: allouer l’espace mémoire de façon dynamique
• Dans la bibliothèque stdlib.h:

// Réserve un bloc de taille `size`
void* malloc(size_t size);
// Libère l'espace mémoire pointé par `ptr`
void free(void* ptr);
// Réserve un bloc de taille `nmemb * size` initialisé à 0
void* calloc(size_t nmemb, size_t size);
// Redimensionne un bloc de taille `size` déjà alloué dynamiquement
void* realloc(void* ptr, size_t size);
// Redimensionne un bloc de taille `nmemb * size`
void* reallocarray(void* ptr, size_t nmemb, size_t size);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 8 / 57



Les fonctions malloc et calloc

void* malloc(size_t size);

• Réserve sur le tas (heap) un bloc de mémoire
• De taille size
• Retourne un pointeur vers ce bloc
• Retourne NULL s’il n’y a plus d’espace mémoire

void* calloc(size_t nmemb, size_t size);

• Réserve nmemb blocs de mémoire consécutifs
• De taille individuelle size
• Initialise toutes les valeurs à 0
• Retourne un pointeur vers ce bloc
• Retourne NULL s’il n’y a plus d’espace mémoire

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 9 / 57



La fonction free

void free(void* ptr);

• Libère l’espace mémoire pointé par ptr
• Réservé lors d’un appel précédent à malloc ou calloc
• La taille libérée est égale à celle réservée
• Si ptr == NULL, alors rien ne se passe

Attention
• Si free a déjà été appelé sur ptr
• Ou si la mémoire pointée par ptr n’a pas été allouée

précédemment
Alors le comportement est indéfini.

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 10 / 57



Les fonctions realloc et reallocarray

void* realloc(void* ptr, size_t size);

• Redimensionne un bloc de mémoire à la taille size
• Préalablement réservé avec malloc ou calloc
• Retourne un pointeur vers le bloc redimensionné
• Retourne NULL s’il n’y a plus d’espace mémoire

void* reallocarray(void* ptr, size_t nmemb, size_t size);

• Équivalent à realloc(ptr, nmemb * size)

Attention
• La valeur des octets présents avant et après est préservée
• Si agrandissement, les « nouveaux » octets sont indéterminés
• Pointeur retourné peut être différent du pointeur en 1er

argument

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 11 / 57



Gestion de la mémoire

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 12 / 57



Fuite de mémoire (memory leak)
• Mémoire réservée mais non référencée
• Provoquée lorsqu’on appelle malloc ou calloc
• Et qu’on oublie de libérer avec free
• Attention: souvent « cachée » derrière une autre fonction

Exemples
• Initialisation d’une structure de données dynamique
• Utilisation de la fonction strdup (duplication de chaîne)
• Bibliothèque SDL: SDL_Init

Comment les éviter?
• S’assurer que tout appel à malloc ou calloc
• Est couplé à un appel de la fonction free
• Souvent à l’aide de fonctions

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 13 / 57

https://www.libsdl.org/


Responsabilité de mémoire

• Si une fonction utilise malloc sans free associé
• Le comportement doit être documenté (docstring)
• Exemple: la fonction strdup

The strdup() function returns a pointer to a new string which
is a duplicate of the string s. Memory for the new string is
obtained with malloc(3), and can be freed with free(3).

• Fournir une fonction complémentaire qui libère l’espace alloué
• Exemple: SDL_Quit est l’« inverse » de SDL_Init

Attention
• Pas de ramasse-miettes (garbage collector)
• Préférer un passage par adresse
• Et utiliser malloc/calloc/free seulement lorsqu’inévitable

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 14 / 57



L’outil Valgrind
• Cadriciel permettant de concevoir des outils d’analyse

dynamique
• Permet de détecter des erreurs de gestion de mémoire
• Et de profiler un programme en détail
• Lien officiel: http://valgrind.org/
• Invocation:

$ valgrind [options valgrind] [programme] [options programme]

Plusieurs dizaines d’options:
• --tool=<toolname>: outil (par défaut, memcheck)
• --leak-check=<no|summary|yes|full>: vérifier fuites mémoires
• --time-stamp=<yes|no>: afficher chronologie
• --track-origins=<yes|no>: origine des valeurs non initialisées
• etc.

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 15 / 57

http://valgrind.org/


Exemple (1/5)
#include <stdio.h>
#include <stdlib.h>

double* sum(const double* v1, const double* v2, unsigned int n) {
double* v = malloc(n * sizeof(double));
for (unsigned int i = 0; i < n; ++i)

v[i] = v1[i] + v2[i];
return v;

}

void print_vector(const double* v, unsigned int n) {
printf("[ ");
for (unsigned int i = 0; i < n; ++i)

printf("%lf ", v[i]);
printf("]");

}

int main(void) {
double v1[] = { 2.0, -1.5, 3.4};
double v2[] = {-1.0, 2.1, -0.8};
print_vector(sum(v1, v2, 3), 3);
return 0;

}

Résultat:
[ 1.000000 0.600000 2.600000 ]

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 16 / 57



Exemple (2/5)
$ gcc sum_malloc.c -o sum_malloc
$ valgrind ./sum_malloc
$ valgrind --leak-check=yes ./sum_malloc
==6724== Memcheck, a memory error detector
==6724== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==6724== Using Valgrind -3.13.0 and LibVEX; rerun with -h for copyright info
==6724== Command: ./sum_malloc
==6724==
[ 1.000000 0.600000 2.600000 ]==6724==
==6724== HEAP SUMMARY:
==6724== in use at exit: 24 bytes in 1 blocks
==6724== total heap usage: 2 allocs, 1 frees, 1,048 bytes allocated
==6724==
==6724== 24 bytes in 1 blocks are definitely lost in loss record 1 of 1
==6724== at 0x4C2FB0F: malloc (in /usr/lib/valgrind/[...]
==6724== by 0x10876B: sum (in [...]/code/sum_malloc)
==6724== by 0x1088BE: main (in [...]/code/sum_malloc)
==6724==
==6724== LEAK SUMMARY:
==6724== definitely lost: 24 bytes in 1 blocks
==6724== indirectly lost: 0 bytes in 0 blocks
==6724== possibly lost: 0 bytes in 0 blocks
==6724== still reachable: 0 bytes in 0 blocks
==6724== suppressed: 0 bytes in 0 blocks
==6724==
==6724== For counts of detected and suppressed errors, rerun with: -v
==6724== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 17 / 57



Exemple (3/5)
#include <stdio.h>
#include <stdlib.h>

double* sum(const double* v1, const double* v2, unsigned int n) {
double* v = malloc(n * sizeof(double));
for (unsigned int i = 0; i < n; ++i)

v[i] = v1[i] + v2[i];
return v;

}

void print_vector(const double* v, unsigned int n) {
printf("[ ");
for (unsigned int i = 0; i < n; ++i)

printf("%lf ", v[i]);
printf("]");

}

int main(void) {
double v1[] = { 2.0, -1.5, 3.4};
double v2[] = {-1.0, 2.1, -0.8};
double* v = sum(v1, v2, 3);
print_vector(v, 3);
free(v);
return 0;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 18 / 57



Exemple (4/5)
$ gcc sum_malloc_free.c -o sum_malloc_free
$ valgrind --leak-check=yes ./sum_malloc_free
==10376== Memcheck, a memory error detector
==10376== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==10376== Using Valgrind -3.13.0 and LibVEX; rerun with -h for copyright info
==10376== Command: ./sum_malloc_free
==10376==
[ 1.000000 0.600000 2.600000 ]
==10376==
==10376== HEAP SUMMARY:
==10376== in use at exit: 0 bytes in 0 blocks
==10376== total heap usage: 2 allocs, 2 frees, 1,048 bytes allocated
==10376==
==10376== All heap blocks were freed -- no leaks are possible
==10376==
==10376== For counts of detected and suppressed errors, rerun with: -v
==10376== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Allocation dynamique
• Est-ce que malloc est vraiment nécessaire ici?
• Réponse: non!

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 19 / 57



Exemple (5/5)
#include <stdio.h>
#include <stdlib.h>

void compute_sum(const double* v1, const double* v2,
double* v, unsigned int n) {

for (unsigned int i = 0; i < n; ++i)
v[i] = v1[i] + v2[i];

}

void print_vector(const double* v, unsigned int n) {
printf("[ ");
for (unsigned int i = 0; i < n; ++i)

printf("%lf ", v[i]);
printf("]");

}

int main(void) {
double v1[] = { 2.0, -1.5, 3.4};
double v2[] = {-1.0, 2.1, -0.8};
double v[3];
compute_sum(v1, v2, v, 3);
print_vector(v, 3);
return 0;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 20 / 57



Piles

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 21 / 57



Pile
• Structure de donnée fondamentale
• Stratégie LIFO = last in first out

Interface minimale (pile de caractères)
// Initialize the stack
void stack_initialize(Stack* s);
// Is stack empty?
bool stack_is_empty(const Stack* s);
// Push a value on top
void stack_push(Stack* s, char value);
// Pop the value from the top
char stack_pop(Stack* s);
// Delete a stack
void stack_delete(Stack* s);

Implémentation
• Tableau statique ou dynamique
• Liste simplement chaînée

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 22 / 57



Représentation

Déclaration de types en C:
// Node
struct StackNode {

char value;
struct StackNode* next;

};

// Stack
typedef struct {

struct StackNode* first;
unsigned int size;

} Stack;

Représentation schématique:

'v'

'o'

'i'

'd'

'v'

'o'

'i'

'd'

4

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 23 / 57



Invariants

Trois invariants
Pour toute pile s et pour tout noeud node de s,

• node.next == NULL ssi node est le dernier noeud de s
• s.first == NULL ssi stack_is_empty(s) est vrai
• Le nombre de noeuds dans s est donné par s.size

Utilité?
• Quand on implémente stack_push et stack_pop
• Supposer les invariants satisfaits en début de fonction
• Et s’assurer qu’ils sont encore satisfaits à la fin

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 24 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

?? ??

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

??

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

0

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

?? ??

0

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

'v' ??

0

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

'v'

0

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

'v'

0

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (1/2)
// Initialize the stack
void stack_initialize(Stack* s) {

s->first = NULL;
s->size = 0;

}

// Is stack empty?
bool stack_is_empty(const Stack* s) {

return s->size == 0;
}

// Push a value on top
void stack_push(Stack* s, char value) {

struct StackNode* node = malloc(sizeof(struct StackNode));
node->value = value;
node->next = s->first;
s->first = node;
++s->size;

}

'v'

1

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 25 / 57



Implémentation (2/2)
// Pop the value from the top
char stack_pop(Stack* s) {

if (!stack_is_empty(s)) {
char value = s->first->value;
struct StackNode* node = s->first;
s->first = node->next;
free(node);
--s->size;
return value;

} else {
fprintf(stderr, "Cannot pop from empty stack\n");
exit(1);
return '?';

}
}

// Delete a stack
void stack_delete(Stack* s) {

while (!stack_is_empty(s)) stack_pop(s);
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 26 / 57



Exemple d’utilisation: parenthésage équilibré
/**
* Returns true if and only if an expression is balanced
*
* @param expr The expression to check
* @returns True if and only if the expression is balanced
*/

bool is_balanced(const char* expr) {
bool balanced = true;
Stack s;
stack_initialize(&s);
for (unsigned int i = 0; balanced && expr[i] != '\0'; ++i) {

if (expr[i] == '(') {
stack_push(&s, ')');

} else if (expr[i] == '[') {
stack_push(&s, ']');

} else if (expr[i] == '{') {
stack_push(&s, '}');

} else if (expr[i] == ')' || expr[i] == ']' || expr[i] == '}') {
if (stack_is_empty(&s))

balanced = false;
else

balanced = expr[i] == stack_pop(&s);
}

}
balanced = balanced && stack_is_empty(&s);
stack_delete(&s);
return balanced;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 27 / 57



Tableaux dynamiques

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 28 / 57



Tableau dynamique

• Tableau dont la taille varie selon l’usage
• Supporté par défaut dans plusieurs langages
• Exemples: C++ (vector), Java (ArrayList), Python (listes)

Implémentation
• Capacité (capacity): taille « réelle » du tableau en mémoire
• Taille (size): nombre d’éléments « pertinents »

Redimensionnement
• Automatiquement, en doublant la taille
• Ou manuellement, par un appel de fonction
• Parfois, contracté automatiquement quand trop d’espace

inoccupé

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 29 / 57



Interface
// Initialize an empty array
void array_initialize(Array* a);

// Append an element to the end of an array
void array_append(Array* a, int e);

// Insert an element in an array
void array_insert(Array* a, unsigned int i, int element);

// Remove an element from an array at a given index
void array_remove(Array* a, unsigned int i);

// Check if an array contains a given element
bool array_has_element(const Array* a, int e);

// Return the element at a given index in an array
int array_get(const Array* a, unsigned int i);

// Delete an array
void array_delete(Array* a);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 30 / 57



Représentation
// A resizable array
typedef struct {

int* values; // The values of the array
unsigned int size; // The current size
unsigned int capacity; // The capacity

} Array;

5 8
values size capacity

13 -4 6 0 -1 ?? ?? ??

Invariants:
• La taille réservée par values est capacity * sizeof(int)
• size <= capacity
• Seules les size premières valeurs sont « pertinentes »

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 31 / 57



Implémentation (1/4)
// Initialize an empty array
void array_initialize(Array* a) {

a->values = malloc(sizeof(int));
a->size = 0;
a->capacity = 1;

}

// Append an element to the end of an array
void array_append(Array* a, int e) {

array_resize_if_needed(a);
a->values[a->size] = e;
++a->size;

}

// Insert an element in an array
void array_insert(Array* a, unsigned int i, int e) {

array_check_index(a, i);
array_resize_if_needed(a);
for (unsigned int j = a->size - 1; j > i; --j)

a->values[j] = a->values[j - 1];
a->values[i] = e;
++a->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 32 / 57



Implémentation (2/4)

// Remove an element from an array at a given index
void array_remove(Array* a, unsigned int i) {

array_check_index(a, i);
++i;
while (i < a->size) {

a->values[i - 1] = a->values[i];
++i;

}
--a->size;

}

// Check if an array contains a given element
bool array_has_element(const Array* a, int e) {

unsigned int i = 0;
while (i < a->size && array_unsafe_get(a, i) != e)

++i;
return i < a->size;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 33 / 57



Implémentation (3/4)

// Return the element at a given index in an array
int array_get(const Array* a, unsigned int i) {

array_check_index(a, i);
return array_unsafe_get(a, i);

}

// Delete an array
void array_delete(Array* a) {

free(a->values);
}

// Resize an array if the capacity is reached
void array_resize_if_needed(Array* a) {

if (a->size == a->capacity) {
a->capacity *= 2;
a->values = realloc(a->values, a->capacity * sizeof(int));

}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 34 / 57



Implémentation (4/4)
// Return the element at index i in an array (no check)
int array_unsafe_get(const Array* a, unsigned int i) {

return a->values[i];
}

// Print an array to stdout
void array_print(const Array* a) {

unsigned int i;
printf("[");
for (i = 0; i < a->size; ++i) {

printf(" %d", a->values[i]);
}
printf(" ]");

}

// Check if an index is out of bound
void array_check_index(const Array* a, unsigned int i) {

if (i >= a->size) {
fprintf(stderr, "Invalid index %d (size = %d)\n", i, a->size);
exit(1);

}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 35 / 57



Utilisation (1/2)
int main() {

Array a; array_initialize(&a);
printf("Appending 3, 2, 5, 7, 8, 7: ");
array_append(&a, 3); array_append(&a, 2);
array_append(&a, 5); array_append(&a, 7);
array_append(&a, 8); array_append(&a, 7);
array_print(&a);
printf("\nRemoving at position 2: ");
array_remove(&a, 2); array_print(&a);
printf("\nRemoving at position 4: ");
array_remove(&a, 4); array_print(&a);
printf("\nRemoving at position 2: ");
array_remove(&a, 2); array_print(&a);
printf("\nInserting 7 at position 1: ");
array_insert(&a, 1, 7); array_print(&a);
printf("\n");
for (int e = 0; e <= 9; e += 2)

printf("Has element %d ? %s\n", e,
array_has_element(&a, e) ? "yes" : "no");

array_delete(&a);
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 36 / 57



Utilisation (2/2)

Résultat:
Appending 3, 2, 5, 7, 8, 7: [ 3 2 5 7 8 7 ]
Removing at position 2: [ 3 2 7 8 7 ]
Removing at position 4: [ 3 2 7 8 ]
Removing at position 2: [ 3 2 8 ]
Inserting 7 at position 1: [ 3 7 2 8 ]
Has element 0 ? no
Has element 2 ? yes
Has element 4 ? no
Has element 6 ? no
Has element 8 ? yes

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 37 / 57



Tableaux multidimensionnels

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 38 / 57



Tableau multidimensionnel
• Généralisation d’un tableau à plusieurs dimensions
• Aussi appelé matrice
• Simplifie la manipulation des données homogènes
• En les organisant selon leurs dimensions

Version aplatie
• Tableau unidimensionnel
• Plus compact
• Mais on doit gérer l’accès (indexation)

Par indirection
• Tableau de pointeurs
• Moins compact
• Mais plus facile de gérer l’indexation

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 39 / 57



Interface (partielle)

// Initialize a matrix
void matrix_initialize(struct Matrix* m,

unsigned int r,
unsigned int c,
bool random);

// Print a matrix to stdout
void matrix_print(const struct Matrix* m);

// Add the matrix `m2` to the matrix `m1`
void matrix_add(struct Matrix* m1, const struct Matrix* m2);

// Delete the given matrix
void matrix_delete(struct Matrix* m);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 40 / 57



Représentation

struct Matrix {
unsigned int r; // Number of rows
unsigned int c; // Number of columns
double** values; // Values in matrix

};

4 3
r c values

-1.1 3.4 8.5

7.1 0.0 -4.1

-2.5 1.4 -1.0

0.0 3.7 -9.8

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 41 / 57



Implémentation (1/3)
// Initialize a matrix with 0 or random values
void matrix_initialize(struct Matrix* m,

unsigned int r,
unsigned int c,
bool random) {

m->r = r;
m->c = c;
m->values = malloc(r * sizeof(double*));
for (unsigned int i = 0; i < r; ++i) {

m->values[i] = malloc(c * sizeof(double));
for (unsigned int j = 0; j < c; ++j) {

if (random)
m->values[i][j] = (float)rand() /

(float)(RAND_MAX / 20.0) - 10.0;
else

m->values[i][j] = 0.0;
}

}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 42 / 57



Implémentation (2/3)
// Print a matrix to stdout
void matrix_print(const struct Matrix* m) {

for (unsigned int i = 0; i < m->r; ++i) {
printf("[ ");
for (unsigned int j = 0; j < m->c; ++j)

printf("%6.2lf ", m->values[i][j]);
printf("]\n");

}
}

// Add the second matrix to the first one
void matrix_add(struct Matrix* m1, const struct Matrix* m2) {

if (m1->r != m2->r || m1->c != m2->c) {
fprintf(stderr, "Error: matrices have different dimensions\n");
exit(1);

}
for (unsigned int i = 0; i < m1->r; ++i)

for (unsigned int j = 0; j < m1->c; ++j)
m1->values[i][j] += m2->values[i][j];

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 43 / 57



Implémentation (3/3)

// Delete a matrix
void matrix_delete(struct Matrix* m) {

for (unsigned int i = 0; i < m->r; ++i)
free(m->values[i]);

free(m->values);
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 44 / 57



Utilisation (1/2)

int main(void) {
srand(time(NULL));
struct Matrix m1, m2;
printf("Initializing m1:\n");
matrix_initialize(&m1, 3, 5, true);
matrix_print(&m1);
printf("Initializing m2:\n");
matrix_initialize(&m2, 3, 5, true);
matrix_print(&m2);
printf("Adding m2 to m1:\n");
matrix_add(&m1, &m2); matrix_print(&m1);
matrix_delete(&m1); matrix_delete(&m2);
return 0;

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 45 / 57



Utilisation (2/2)

Résultat (les valeurs peuvent varier):
Initializing m1:
[ 7.07 9.70 -6.46 -4.45 1.04 ]
[ -5.21 -1.31 -6.26 -8.26 0.70 ]
[ 1.93 -8.22 -0.17 -8.96 8.88 ]
Initializing m2:
[ -0.74 1.29 1.24 -8.09 -3.17 ]
[ -1.95 -6.93 -2.18 1.96 -4.75 ]
[ 4.34 3.63 0.78 -5.20 7.19 ]
Adding m2 to m1:
[ 6.33 10.99 -5.22 -12.54 -2.14 ]
[ -7.15 -8.24 -8.44 -6.30 -4.05 ]
[ 6.26 -4.59 0.61 -14.16 16.07 ]

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 46 / 57



Arbres binaires de recherche

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 47 / 57



Arbres binaires de recherche
Arbre binaire

• Ensemble de noeuds organisés de façon hiérarchique
• Chaque noeud référence deux enfants
• Possiblement vides

Arbre binaire de recherche (ABR)
• Chaque noeud est identifié par une clé
• Choisie dans un ensemble de clés totalement ordonné
• Et contient une valeur
• Invariant:

𝑘

≤ 𝑘 ≥ 𝑘

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 48 / 57



Représentation

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root

// A tree node
struct TreeNode {

char* key; // Key
char* value; // Value
struct TreeNode* left; // Left subtree
struct TreeNode* right; // Right subtree

};

// A tree map
typedef struct {

struct TreeNode* root; // Root of tree
} Treemap;

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 49 / 57



Interface

// Initialize an empty tree map
void treemap_initialize(Treemap* t);

// Return the value associated with the given key in a tree map
char* treemap_get(const Treemap* t, const char* key);

// Set the value for the given key in a tree map
void treemap_set(Treemap* t, const char* key, const char* value);

// Indicate if a key exists in a tree map
bool treemap_has_key(const Treemap* t, const char* key);

// Print a tree map to stdout
void treemap_print(const Treemap* t);

// Delete a tree map
void treemap_delete(Treemap* t);

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 50 / 57



Récupérer un noeud

struct TreeNode* treemap_get_node(const struct TreeNode* node,
const char* key) {

if (node == NULL) {
return NULL;

} else {
int cmp = strcmp(key, node->key);
if (cmp == 0)

return (struct TreeNode*)node;
else if (cmp < 0)

return treemap_get_node(node->left, key);
else

return treemap_get_node(node->right, key);
}

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 51 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root

On souhaite insérer
la clé melon

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root

On souhaite insérer
la clé melon

node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

rootnode

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

rootnode

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

rootnode

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root

node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème"

root

node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Insérer un noeud
void treemap_insert_node(struct TreeNode** node,

const char* key,
const char* value) {

if (*node == NULL) {
*node = malloc(sizeof(struct TreeNode));
(*node)->key = strdup(key);
(*node)->value = strdup(value);
(*node)->left = NULL;
(*node)->right = NULL;

} else if (strcmp(key, (*node)->key) < 0) {
treemap_insert_node(&(*node)->left, key, value);

} else {
treemap_insert_node(&(*node)->right, key, value);

}
}

"kiwi" "miam!"

"banane" "split!" "pomme" "d'Api"

"fraise" "à la crème" "melon" "chapeau"

root

node

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 52 / 57



Implémentation (1/3)
void treemap_initialize(Treemap* t) {

t->root = NULL;
}

char* treemap_get(const Treemap* t, const char* key) {
struct TreeNode* node = treemap_get_node(t->root, key);
return node == NULL ? NULL : node->value;

}

bool treemap_has_key(const Treemap* t, const char* key) {
return treemap_get_node(t->root, key) != NULL;

}

void treemap_set(Treemap* t, const char* key, const char* value) {
struct TreeNode* node = treemap_get_node(t->root, key);
if (node != NULL) {

free(node->value);
node->value = strdup(value);

} else {
treemap_insert_node(&(t->root), key, value);

}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 53 / 57



Implémentation (2/3)

void treemap_print(const Treemap* t) {
printf("TreeMap {\n");
treemap_print_node(t->root);
printf("}\n");

}

void treemap_print_node(const struct TreeNode* node) {
if (node != NULL) {

treemap_print_node(node->left);
printf(" %s: %s\n", node->key, node->value);
treemap_print_node(node->right);

}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 54 / 57



Implémentation (2/3)

void treemap_delete(Treemap* t) {
treemap_delete_node(t->root);

}

void treemap_delete_node(struct TreeNode* node) {
if (node != NULL) {

treemap_delete_node(node->left);
treemap_delete_node(node->right);
free(node->key);
free(node->value);
free(node);

}
}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 55 / 57



Utilisation (1/2)
int main() {

Treemap t;
treemap_initialize(&t);
treemap_set(&t, "firstname", "Doina");
treemap_set(&t, "lastname", "Precup");
treemap_set(&t, "city", "Montreal");
treemap_set(&t, "province", "Quebec");
treemap_set(&t, "country", "Canada");
treemap_set(&t, "position", "DeepMind");
printf("Printing the tree map\n");
treemap_print(&t);
printf("Get \"firstname\": %s\n", treemap_get(&t, "firstname"));
printf("Get \"province\": %s\n", treemap_get(&t, "province"));
printf("Get \"position\": %s\n", treemap_get(&t, "position"));
printf("Changing country to Romania\n");
treemap_set(&t, "country", "Romania");
printf("Get \"country\": %s\n", treemap_get(&t, "country"));
printf("Printing the tree map\n"); treemap_print(&t);
treemap_delete(&t);

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 56 / 57



Utilisation (2/2)
Résultat:
Printing the tree map
TreeMap {

city: Montreal
country: Canada
firstname: Doina
lastname: Precup
position: DeepMind Montreal Head
province: Quebec

}
Get "firstname": Doina
Get "province": Quebec
Get "position": DeepMind Montreal Head
Changing country to Romania
Get "country": Romania
Printing the tree map
TreeMap {

city: Montreal
country: Romania
firstname: Doina
lastname: Precup
position: DeepMind Montreal Head
province: Quebec

}

A. Blondin Massé (UQAM) Chapitre 5: Structures de données INF3135 v253 CC-BY-NC-SA 57 / 57


	Allocation dynamique
	Gestion de la mémoire
	Piles
	Tableaux dynamiques
	Tableaux multidimensionnels
	Arbres binaires de recherche

